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ABSTRACT

Eastward transport and clockwise rota-
tion of crust around the southeastern mar-
gin of the Tibetan Plateau dominates active 
deformation east of the Eastern Himalayan 
Syntaxis. Current crustal movement inferred 
from GPS measurements indicates ongoing 
distortion of the traces of the active Red River 
fault and the Mesozoic Yalong-Yulong-Long-
men Shan thrust belt. By extrapolating cur-
rent rates back in time, we infer that this pat-
tern of deformation developed since 10.1 ± 1.5 
Ma. This date of initiation is approximately 
synchronous with a suite of tectonic phe-
nomena, both near and far, within the wide 
Eurasia/Indian collision zone, including the 
initiation of slip on the Ganzi-Yushu-Xian-
shuihe fault and crustal thinning and E-W ex-
tension by normal faulting on N-S–trending 
rifts in the plateau interior. Accordingly, the 
eastward movement of eastern Tibet and the 
clockwise rotation of that material seem to be 
local manifestations of a larger geodynamic 
event at ca. 10–15 Ma that changed the kine-
matic style and reorganized deformation not 
only on the plateau-wide scale, but across the 
entire region affected by the India/Eurasia 
collision. Convective removal of some or all of 
Tibet’s mantle lithosphere seems to offer the 

simplest mechanism for these approximately 
simultaneous changes.

INTRODUCTION

Evidence from much of eastern Asia suggests 
that long after India’s collision with Eurasia at ca. 
50 Ma, the style of deformation changed since 
10–15 Ma. Although the thick crust beneath the 
Tibetan Plateau resulted from Late Cretaceous 
and Cenozoic horizontal shortening both before 
and since India collided with Eurasia (e.g., Kapp 
and DeCelles, 2019), both fault plane solutions 
of earthquakes and GPS measurements show 
that normal faulting, E-W extension, and crustal 
thinning characterize the latest active deforma-
tion within the plateau (e.g., Armijo et al., 1986; 
Elliott et al., 2010; Gan et al., 2007; Ge et al., 
2015; Li et al., 2020; Molnar and Chen, 1983; 
Molnar and Lyon-Caen, 1989; Molnar and Tap-
ponnier, 1978; Ni and York, 1978; Shen et al., 
2005; Wang et  al., 2001; Zhang et  al., 2004). 
Detailed studies of individual grabens through-
out Tibet suggest that the widespread normal 
faulting began since ca. 8–15 Ma (e.g., Blisniuk 
et al., 2001; Edwards and Harrison, 1997; Garzi-
one et al., 2003; Harrison et al., 1992, 1995; Kali 
et al., 2010; Lee et al., 2011; McCallister et al., 
2014; Murphy et al., 2002; Pan and Kidd 1992; 
Sanchez et al., 2013; Saylor et al., 2010; Styron 
et al., 2013; Woodruff et al., 2013).

In the context of active large-scale deforma-
tion of eastern Asia, the E-W extension across 
the Tibetan Plateau is reflected by GPS data 
showing more rapid eastward movement of 
eastern than western Tibet relative to the stable 
Eurasia (see sub-map in Fig. 1). This extension 
is especially clear when velocities are plotted in 
a “Tibetan Plateau-fixed” reference frame ob-
tained by minimizing the net movement of sites 
within the plateau (Gan et al., 2007) (Fig. 1). 

East of the highest part of the plateau, GPS ve-
locities show a clockwise rotation and eastward 
transport of the southeastern plateau, around 
the Eastern Himalayan Syntaxis (e.g., Gan 
et al., 2007; Li et al., 2020; Wang et al., 2001; 
Zhang et al., 2004). The smoothly varying ve-
locity field southeast of Tibet raises the question 
of when did that pattern of deformation begin 
and did it occur concurrently with the onset of 
normal faulting in central and southern Tibet.

To address the timing of clockwise rotation 
about the eastern syntaxis, we exploit current 
rates of crustal deformation based on GPS ve-
locities, and we use fault traces as passive mark-
ers that are being distorted by that deformation. 
In particular, we rely on the warping of the Red 
River fault (Schoenbohm et al., 2006) and the 
displacement and shear of the Yalong-Yulong 
thrust belt, which forms the southwestward con-
tinuation of the Longmen Shan thrust belt (e.g., 
Burchfiel and Chen., 2012; Liu-Zeng et  al., 
2008; Wang et al., 1998; Xu et al., 2003) (Fig. 2). 
We assume that the current horizontal deforma-
tion rate approximates the long-term rate. We 
contend that both theory and observations justify 
such extrapolations.

In geodynamics, the equation of equilib-
rium, or Stokes’s equation, balances gradients 
of components of stress with the body force 
due to gravity. Forces that induce deformation 
of parcels of lithosphere are matched exactly 
by viscous forces that resist deformation, for 
the acceleration, and therefore the total force 
at any point, is zero. Consequently, changes in 
rates of deformation can arise only because of 
changes in boundary conditions or by altera-
tions of rheological parameters, like viscosity, 
that relate stress to strain rate. As rheological 
properties are affected most strongly by tem-
perature, and characteristic time constants for 
diffusion of heat through the lithosphere are 
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tens of millions of years, such changes ought 
to have little effect on rates of deformation on 
the million-year time scale. Changes in lat-
eral boundary conditions can occur on shorter 
time scales, such as when a new plate bound-
ary forms, but such events are rare. For con-
vergence between India and Eurasia, which is 
directly related to our study area, the rate and 
direction have changed little since ca. 10 Ma 
or more (e.g., DeMets et al., 2020; Molnar and 
Stock, 2009).

Changes in bottom boundaries, such as by 
the removal of mantle lithosphere, seem also to 
be possible in the few-million-year time scale 
(e.g., Bird and Baumgardner, 1981; Houseman 
et al., 1981), but such events also seem to be 
rare. Evidence of such a process is sparse, and 

we are unaware of evidence suggesting that re-
moval of mantle lithosphere has occurred more 
than once in the typical tens-of-millions-of-
year lifetimes of major mountain belts. Thus, 
in regions that have undergone deformation 
for periods as long as tens of millions of years, 
changes in rates of large-scale deformation 
that exceed several tens of percent ought to be 
rare, and occur only once, or at most twice, in 
such periods.

At the largest scale, numerous studies of 
high-resolution histories of relative plate 
motion show only small, <20% changes in 
relative velocities over ∼10 m.y. periods 
(e.g., DeMets and Merkouriev, 2016; DeMets 
et al., 2005, 2015a, 2015b, 2020; Iaffaldano, 
2014; Iaffaldano et  al., 2014; Merkouriev 

and DeMets, 2006, 2008, 2014). In a note-
worthy exception, convergence between the 
Nazca and South America plates seems to 
have changed by ∼30% over a few-million-
year period (DeMets and Merkouriev, 2019; 
Garzione et al., 2006; Iaffaldano et al., 2006), 
when the Central Andes seem to have risen 
2–3 km in a comparably short period, and 
when mantle lithosphere seems to have been 
removed from beneath the region (e.g., Gar-
zione et al., 2006, 2008; Gubbels et al., 1993; 
Kennan et al., 1997; Schildgen et al., 2007). 
The assumption of constant rates of relative 
plate motion, in fact, enabled Wilson (1993) 
to test refinements of the geomagnetic time 
scale, and Krijgsman et  al. (1999) to refine 
that time scale further.

Figure 1. Map showing the GPS velocity field of Tibet and sur-
roundings, as well as rifts and grabens in central and southern 
Tibet (represented by dark gray belts, adapted from Ge et al., 
2015). The GPS velocity field in the main map is relative to a 
“Tibetan Plateau-fixed” reference frame, which highlights the 
E-W extension across the plateau and clockwise rotation in 
its eastern part (updated from Gan et al., 2007). The sub-map 
shows the GPS velocity field in a commonly used Eurasia-fixed 
reference frame. The rectangular box encloses the area of con-
cern in this study. F.—fault.
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We recognize that changes in rates of defor-
mation must necessarily occur to build mountain 
ranges and high plateaus, but we assume that 
in periods spanning tens of millions of years, 
 horizontal deformation rates, such as the rota-
tional deformation about the syntaxis, can occur 
at essentially constant rates over such periods.

DEFLECTIONS OF THE RED RIVER 
FAULT AND YALONG-YULONG-
LONGMEN SHAN THRUST BELT

The Ailao Shan shear zone, a long-standing, 
deeply exhumed fault zone, underwent sev-
eral hundred kilometers of Oligo-Miocene 

left-lateral shear (Harrison et  al., 1996; Le-
loup et al., 2001; Searle et al., 2010; Tappon-
nier et al., 1986; Wang and Burchfiel, 1997). 
Since 10–14 Ma, however, the Red River fault, 
which follows approximately the northeast 
margin of the Ailao Shan shear zone (Fig. 2), 
has undergone right-lateral displacement of 25 

Figure 2. Schematic tectonic 
map showing the major faults 
around the southeast margin of 
the Tibetan Plateau (adapted 
from Xu et al., 2003). The Red 
River fault (F.) and Yalong-
Yulong-Longmen Shan thrust 
belt (T.B.), framed by the 
dashed boxes, are the focus of 
this study. Thick arrows show 
movement relative to South 
China. Inset shows an ancient 
subduction zone, part of which 
now lies along the Yalong-
Yulong-Longmen Shan thrust 
belt and apparently has been 
offset by slip on the Xianshuihe 
fault (adapted from Burchfiel 
and Chen, 2012). F.—fault; 
S.Z.—shear zone; T.B.—thrust 
belt.
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km (Replumaz et al., 2001), ∼40 km (Schoen-
bohm et al., 2006), or 20–54 km (Wang et al., 
1998). This reversal in regional deformation 
implies other changes in relative motions of 
surrounding domains. Important for us here, 
the Red River fault is not straight, but shows a 
marked left-lateral deflection of ∼60 km across 
a region 100–200 km in width in the middle 
segment where the Xianshuihe-Xiaojiang fault 
approaches it (e.g., Schoenbohm et al., 2006; 
Wang et al., 1998) (Fig. 2). So, although ac-
tive as a right-lateral strike-slip fault, the trace 
of Red River fault serves as a passive marker, 
deflected by shear of an internally deforming 
region around the Eastern Himalayan Syntaxis 
(Schoenbohm et al., 2006).

The Longmen Shan thrust belt lies within the 
Longmen Shan, the mountain range that sepa-
rates the eastern Tibetan Plateau from the Sich-
uan Basin. We do not refer to the active thrust 
fault at that margin (e.g., Hubbard and Shaw, 
2009; Zhang, 2013), but rather to a thrust belt 
that apparently began to develop in Late Trias-
sic, and that accommodated significant crustal 
shortening during the Indosinian Orogeny in 
Mesozoic time (e.g., Burchfiel et  al., 1995; 
Chen and Wilson 1996; Li et al., 2003; Searle 
et al., 2016; Wallis et al., 2003; Xue et al., 2017; 
Yan et  al., 2011). Most agree with Burchfiel 
et al. (1995) that much of the crustal thicken-
ing in this region occurred in Mesozoic time. 
The Late Triassic Longmen Shan thrust belt, 
including deformed and metamorphosed sur-
rounding rock, has been cut and offset ∼60 km 
by the NNW-trending Xianshuihe fault (Burch-
fiel et al., 1995; Wang et al., 1998; Wang et al., 
2009) (Fig.  2). As shown by Liu-Zeng et  al. 
(2008) and Xu et al. (2003), the southwestward 
continuation of the Longmen Shan thrust belt, 
the Yalong-Yulong thrust belt, has been dis-
placed ∼100 km by southeastward crustal ex-
trusion, and forms an arcuate trace with a length 
of ∼200 km (Fig. 2).

As both the Red River fault and the Yalong-
Yulong-Longmen Shan thrust belt existed before 
the late Miocene, their fault traces form regional 
strain markers of the southeastern plateau margin 
that have been deflected. Their deflections record 
shear that has accumulated by clockwise rotation 
that initiated since those features formed. We can 
estimate the date of the initiation of clockwise 
rotation by retro-deforming the deflected fault 

traces using current deformation rates from 
GPS velocities, and assuming that their original 
shapes of the traces were overall straight.

GPS VELOCITIES

About 85% of the GPS velocities in Figure 1 
are from published solutions of two Chinese 
national scientific projects, Crustal Movement 
Observation Network of China (CMONOC-I) 
and Tectonic and Environmental Observation 
Network of Mainland China (CMONOC-II) 
(Li et al., 2012). The detailed GPS observation 
methods and data processing strategies were in-
troduced by Gan et al. (2007) and Liang et al. 
(2013). In addition to the GPS velocity data set 
of 423 stations from CMONOC, we merged 
some other published GPS velocities (Table 1) 
to enhance the density and coverage of GPS 
stations.

Although the CMONOC velocities and 
those of other data sets commonly are given in 
Eurasia-fixed reference frames, those frames 
differ slightly from each other. As each of the 
other data sets shared some stations with the 
CMONOC data set, we used stations common 
to the CMONOC data set as “links” to trans-
form all the other velocities into the same ref-
erence frame as that for CMONOC by using 
rigid-body rotations with appropriate angular 
velocities.  After the reference frame transfor-
mations, the maximum differences of north and 
east components of the velocities for the same 
stations in different data sets are 2.1 and 1.6 
mm/yr, respectively; these values are within 
two standard deviations of the velocity com-
ponents. The final velocities of the common 
stations are the weighted average of the values 
from all the data sets in the same Eurasia-fixed 
reference frame.

Two major earthquakes, 2008 Wenchuan Mw 
7.9 (e.g., Zhang, 2013; Zhang et al., 2010) and 
2013 Lu Shan Ms 7.0 earthquakes (Xu et al., 
2013), occurred in the area of this study dur-
ing the GPS observation span. In order to avoid 
the contamination by transient displacements 
associated with these two events, we excluded 
the GPS data observed after the earthquakes for 
those stations located within ∼500 km of the 
epicentral areas of those earthquakes.

The combined velocities of 501 GPS stations 
in the Eurasia-fixed reference frame demon-

strate the well-known crustal movement pat-
tern (see sub-map in Fig. 1), but to highlight 
the clockwise rotation around the southeastern 
plateau margin relative to its stable neighbor 
block to the east, we transformed the velocities 
into a reference frame fixed to the South China 
Block, by minimizing the root mean square 
velocities of 83 stations located in that block 
(Fig. 3A). Not only is the rotation about the syn-
taxis clear, but it also is confined to the region 
west of the South China Block bounded by the 
Xianshuihe-Xiaojiang fault zone on the north 
and east, and therefore includes a major com-
ponent of left-lateral shear along that boundary 
(Figs. 2 and 3A).

ESTIMATION OF INITIATION AGE

The surface traces of the Red River fault 
and Yalong-Yulong-Longmen Shan thrust belt 
(hereafter “fault traces”) are deflected left-
laterally by the clockwise rotation around the 
eastern syntaxis. Moreover, marked gradients in 
GPS velocities characterize the segments of the 
fault traces where they are deflected. In order 
to estimate the initiation age of the clockwise 
rotation and the deflections of the fault traces 
using GPS velocity field, we adopted the fol-
lowing strategy:

(1) By extending the undeflected segments 
of the fault traces, we defined two directions, 
N138°E and N51°E, which are approximately 
parallel to the traces in the regions where pres-
ent-day rotation is modest (Fig. 3A).

(2) The exact positions of the initial fault 
traces are unknown, but they can be represented 
approximately by linear extensions of the un-
deflected segments. By representing the cur-
rent fault traces as a series of points, we further 
 defined a series of expected corresponding points 
on the extensions of the undeflected segments 
(Fig. 3B). Using the positions of these points, 
we first obtained appropriate velocities of these 
points (shown as the blue vectors in Fig. 3B) by 
interpolation from the GPS velocity field using 
the interpolation algorithm of splines in tension 
(τ = 0.95) (Wessel and Bercovici, 1998; Gan 
et al., 2007). We then averaged the velocities of 
each pair of corresponding points. The averaged 
velocities (shown as the red vectors in Fig. 3B) 
were appointed to represent the long-term ve-
locities of the fault traces.

TABLE 1. BASIC INFORMATION OF GPS VELOCITY DATA SETS

Data set Number of stations Time span Survey mode Source

NW Vietnam 19 ≤3 years Campaign mode: 3–8 surveys during 2001–2012 Duong et al. (2013)
N Vietnam 13 ≤3 years Campaign mode: 2–5 surveys during 1994–2007 Tran et al. (2013)
Eastern Himalayan Syntaxis 6 ≤6 years Campaign mode: 7 surveys during 2007–2013 Devachandra et al. (2014)
Bhutan 30 ≤11 years Campaign mode: 3 surveys in 2001, 2003, and 2012 Vernant et al. (2014)
Eastern Himalayan Syntaxis 10 ≤8 years Campaign mode: ≥3 surveys during 2006–2013 Gupta et al. (2015)
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(3) We assume that all points on the original 
fault traces have moved with current average 
velocities since the traces were deflected. We 
assume that the initial shapes of the fault traces 
were straight, and we let points on the current 
fault traces move backward (Fig. 3C) until they 
recover a shape that is closest to a straight line 
(Fig. 4).

With the above strategy, we estimated simi-
lar ages of initiation of 9.6 Ma and 10.7 Ma 
from the Red River fault and Yalong-Yulong-

Longmen Shan thrust belt, respectively, and 
therefore 10.1 Ma.

As we know, the overall shape of the ini-
tial fault trace need not be straight, although 
in theory and practice, it is more common for 
thrust and strike-slip faults to evolve into over-
all linear features. Hence, the estimation based 
on the ideal linear assumption could include 
deviations, which sometimes are not insig-
nificant. We  estimated the 1σ uncertainty of 
the initiation age with two approaches. First, 

the two independently deduced initiation ages 
were quite consistent, with a difference of 
∼1.1 m.y., which provided us with some clues 
to assess the level of uncertainty. Second, we 
empirically assumed that the best fitting line 
is not significantly  different from the other 
good fitting lines when differences in corre-
lation coefficients between them are less than 
∼1% of the correlation coefficient difference 
between the current and original fault traces 
in the  inversion by least-squares linear fitting 

A B

C

Figure 3. (A) Map showing the GPS velocity field relative to the stable South China Block (with error ellipses of 95% confidence). Con-
tinuations of the Red River fault (F.) and Yalong-Yulong-Longmen Shan thrust belt (T.B.) traces are represented by beaded lines. The thin 
dashed lines directed toward N138°E and N51°E mark extensions of non-deflected segments of the two faults. (B) The blue arrows show 
velocities at points on fault traces and dashed lines and are interpolated from the background GPS velocities, and the red arrows show 
averages of corresponding blue arrows. (C) Map showing our strategy to estimate ages when bending of the faults began by letting the 
points on the current fault traces move backward with the average velocities (the red arrows) until they recover shapes that are closest to 
straight lines.
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(see sub-maps in Fig. 4). This approach yielded 
1σ uncertainties of ±1.3 Ma and ±1.2 Ma for 
the Red River fault and Yalong-Yulong-Long-
men Shan thrust belt, respectively. Based on the 
above empirical assessment, we set ±1.5 Ma as 
a conservative estimate of the 1σ uncertainty, 
and therefore 10.1 ±1.5 Ma for the estimate 
of initiation age. Obviously, readers could mul-
tiply this uncertainty by a factor greater than 
one, if they doubted the approach. It should 
also be noted that the estimate in our method is 
affected mainly by the overall linearity of the 
fault traces, and not the local twists and turns 
in the traces. Figure 4 shows that the inferred 
original fault traces locally twist and turn and 
do not form ideal straight lines.

DISCUSSION

Comparison of Palaeomagnetic Declination 
Anomalies with GPS Observed Rotations

Numerous paleomagnetic studies show 
clockwise declination anomalies of rock from 
 eastern Tibet, including the region northeast of 
the syntaxis to western Yunnan, southeast of 
Tibet. Thus, they indicate clockwise rotation of 

such rock. Two processes have contributed to 
these rotations. First, the present-day GPS ve-
locity field (Fig. 3A) includes rotation about a 
vertical axis. The current pattern of flow around 
the eastern syntaxis includes clockwise rota-
tion, but the amount is small. For a maximum 
rate of ∼10 mm/yr about the syntaxis and ∼500 
km from it, displacement of ∼100 km since 10 
Ma, yields a rotation of only arctan(100/500) 
≈ 11°. Second, and more importantly, as India 
penetrated into Eurasia, both it and the region 
to its north moved northward with respect to 
South China, and induced right-lateral shear 
and clockwise rotation of eastern Tibet (e.g., 
Cobbold and Davy, 1988; Davy and Cobbold, 
1988; England and Molnar, 1990; England and 
Houseman, 1986). Blocks embedded in a zone 
of simple shear of width, L, and across which 
opposite sides are displaced Δu should undergo 
rotation, R, such that arctan (Δu/2L) < R < arc-
tan (Δu/L), that is dependent on the shape of the 
object and boundary conditions (Lamb, 1987; 
McKenzie and Jackson, 1983). With a width L 
≈ 500 km for eastern Tibet, and values of Δu 
between 200 km in the north and 1000 km in 
the south, we might expect R ∼10°–25° in the 
north and R ∼45°–65° in the south. Although 

the contributions of both processes to clockwise 
rotation are apparent, separating them is tricky, 
and the role of the first of these processes cannot 
be assessed well.

Despite scatter, amounts of clockwise ro-
tation inferred from paleomagnetic declina-
tions increase southward, as expected. In the 
northern region near latitudes of ∼35°, where 
though present-day left-lateral slip on east-west 
planes and therefore counterclockwise rotation 
characterizes current deformation (Duvall and 
Clark, 2010), total amounts of clockwise rota-
tion are ∼15°–25° (Dupont-Nivet et al., 2004, 
2008; Fang et al., 2003; Liu et al., 2010; Wang 
et al., 2011; Yan et al., 2006). Near the latitude 
of the syntaxis, most estimates of clockwise 
rotation are 25°–50° (e.g., Huang et al., 1992; 
Kornfeld et al., 2014; Otofuji et al., 1990; To-
drani et al., 2020; Zhang et al., 2020). Farther 
south in Yunnan, yet larger amounts of clock-
wise rotation exceeding 50° (Chen et al., 1995; 
Huang and Opdyke, 1993; Li et al., 2018; Tong 
et  al., 2016) and reaching 90° (Sato et  al., 
2001) have been reported, but many sites show 
smaller amounts of rotation. As important as 
the southward increase in amounts of rotation 
is the scatter in such data. In a particularly thor-

Figure 4. Schematic map showing the predicted original fault traces (thick red lines) of the Red River fault and Yalong-Yulong-Longmen 
Shan thrust belt, along the southeast margin of the Tibetan Plateau, with initiation ages of 9.6 ± 1.3 Ma and 10.7 ± 1.2 Ma, respectively. 
The blue dots show predicted original positions of the corresponding black circles on current fault trace using the velocities (gray ar-
rows) and  the best estimate of initiation age. The thick red lines are smoothed out by averaging the predicted fault trace points (blue 
dots) and corresponding best fitting straight lines (gray dash line), so as to better represent the original fault traces without jagged edges. 
Each inset shows the correlation coefficient of weighted linear fitting of the points predicted by different duration times has a unique 
maximum, which corresponds to the best fit to a straight line and thus the best estimate of the initiation age. The 1σ uncertainties of ages 
are empirically determined based on the assumption that the best fitting line is not significantly different from the other good fitting lines 
when the difference of correlation coefficient between them is less than ∼1% of the correlation coefficient difference between the current 
and original fault traces. Thus, we determine the ranges of the best-fitting age (gray boxes), and in turn, determine the uncertainty of 
the ages.
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ough study of the region just south of the Litang 
fault (Fig. 2), Todrani et al. (2020) reported a 
range from 26° ± 12° of counterclockwise ro-
tation to as much as 37° ± 8° clockwise rota-
tion, with three sites with as much as 60° to 
86° clockwise rotations. Similarly, although 
large rotations have been recorded from parts 
of Yunnan, smaller amounts have also been 
measured: 36.3° ± 13.6° (Sato et  al., 1999), 
26° ± 17° (Funahara et al., 1992), 25° ± 16° 
(Funahara et al., 1993), 12.1° ± 10.0° (Otofuji 
et al., 1998), ∼4° ± 8° (Yoshioka et al., 2003), 
essentially no rotation at a site next to the Red 
River fault (Huang and Opdyke, 1993) and even 
counterclockwise 8° ± 3° (Li et al., 2015) al-
beit from a site near the Xiaojiang fault. These 
rotations are given relative to Eurasia, but a 
better reference frame might be South China. 
Although paleomagnetic studies of its western 
edge show essentially no rotation (e.g., Huang 
and Opdyke, 1992; Otofuji et al., 1990), several 
sites surrounding the Sichuan Basin suggest a 
small clockwise rotation of 5–10° (Tong et al., 
2020). Thus, values given above might be re-
duced by that amount.

As noted above, the current pattern of flow 
around the syntaxis contributes to the clockwise 
rotation but the estimated amount of ∼11° is 
small compared with paleomagnetic declina-
tion anomalies. Moreover, most of the largest 
values (50°–90°) come from south of the region 
currently undergoing that rotation around the 
syntaxis. Otofuji et  al. (2010) suggested that 
these regions with large paleomagnetic decli-
nations underwent rotation when they lay near 
the eastern syntaxis, and subsequently were 
displaced southeastward, where GPS data show 
that only slow rotation occurs today. In a review 
of  paleomagnetic data from Yunnan and sur-
rounding regions, Tong et al. (2021) concluded 
that rotation began since ca. 25.7 ± 2.5 Ma at a 
higher rate than occurs today, despite scatter in 
amounts of rotation. At that time, the syntaxis 
would have lain ∼1000–1500 km south of its 
current position with respect to South China, and 
hence west of this region where large rotations 
have accumulated. We conclude that the paleo-
magnetic declinations, despite scatter, have re-
sulted largely from right-lateral shear of eastern 
Tibet and not from the ongoing flow around the 
syntaxis.

Approximate Synchronization with a Suite 
of Tectonic Deformation Events

The estimated initiation age, 10.1 ± 1.5 Ma, 
of clockwise rotation of the southeastern  plateau 
margin is approximately synchronous with a 
suite of tectonic phenomena, both near and far, 
within the scope of the wide Eurasia/Indian col-

lision zone (Fig. 5), which collectively indicate 
that a major tectonic event happened since the 
middle Miocene.

Onset of the Ganzi-Yushu-Xianshuihe Fault
The region undergoing clockwise rota-

tion around the Eastern Himalayan Syntaxis 
is bounded on the north by the Ganzi-Yushu-
Xianshuihe fault, which crops out as a ductile 
shear zone that consists of mylonite with my-
lonitized and migmatitized rock (Xu et al., 2007; 
Wang et al., 1998) (Fig. 2). The Xianshuihe seg-
ment offsets a huge Precambrian metamorphic 
complex left-laterally for 90–100 km. Also, a 
granodiorite body, with a length parallel to the 
Xianshuihe fault for 80–90 km and a width of 
only 7–20 km, was emplaced along the fault near 
the offset of the belt (Xu et al., 2007). From mi-
cro-structure and geochemical studies, Xu et al. 
(2007) suggested that this linear granodiorite 
was emplaced during the initiation of left-lateral 
displacement on the Xianshuihe fault, and thus, 
the age of emplacement dates the onset of slip on 
the fault. Roger et al. (1995) obtained U-Th and 
Rb-Sr ages of 10–12 Ma, and Xu et al. (2007) 
reported a Rb-Sr age of 9.9–11.6 Ma, which are 
consistent with the inference that clockwise rota-
tion began at 10.1 ± 1.5 Ma, though Searle et al. 
(2016) suggested that slip might have begun at 
only 5 Ma.

Along the whole Ganzi-Yushu-Xianshuihe 
fault zone, the Ganzi-Yushu segment has the 
simplest geometrical structure (Fig.  2). Field 
investigations show that this segment has a  total 
left-lateral offset of 75–80 km based on a dis-
located Triassic granitic pluton (Wang et  al., 
1998). Wang et al. (2009) claimed that fission 
track ages decreased toward the fault zone, and 
they assumed that the oldest (12.8 ± 1.4 Ma) 
marked the date when the fault became active. 
In fact, by relying on GPS velocities, inferred 
late Quaternary offsets of moraines and other 
features, and a total offset of precisely dated 
igneous rock, Chevalier et  al. (2017) inferred 
that the slip rate on the Ganzi-Xianshuihe fault 
(Fig. 1) has been constant since slip began at, or 
shortly after, ca. 12.6 Ma. Thus, one could derive 
a long-term average slip rate of 5.9–6.3 mm/yr 
based on the date and total offset. Multiple es-
timates of short-term average slip rates for late 
Quaternary or Holocene periods from the classic 
methods of dating offset landforms like terraces 
and alluvial fans have yielded a slip rate of ∼7 
mm/yr (Chevalier et al., 2017; Li et al., 1995; 
Zhou et al., 1996). In addition, GPS observations 
give a present-day slip rate of 6.6 ± 1.5 mm/yr 
(Wang et  al., 2013). If the slip rate had been 
constant at 6.6 or 7.0 mm/yr, then 75–80 km of 
offset would imply an onset date of 10.7–12.1 
Ma for the Ganzi segment.

Thus, these onset dates of the Ganzi-Yushu-
Xianshuihe fault are indistinguishable from 
10.1 ± 1.5 Ma, and the fault became active 
synchronously with the eastward transport and 
clockwise rotation.

Slip Reversal of the Red River Fault
The Red River fault is a first-order tectonic 

structure in the southeast margin of the Tibetan 
Plateau; it separates the South China Block to the 
northeast and the Indochina block to the south-
west (Fig. 2). Numerous studies determined that 
the Red River fault experienced a reversal of slip 
from left- to right-lateral sometime between 16 
Ma and 5.5 Ma (Allen et al., 1984; Wang et al., 
1998; Replumaz et al., 2001; Schoenbohm et al., 
2006; Zhu et al., 2009). Recently, based on the 
seismic analysis and stratigraphic information 
from confidential exploration wells in the Gulf of 
Tonkin, where the offshore segment of the Red 
River fault lies, Fyhn and Phach (2015) suggested 
that the reversal of slip may have commenced at 
ca. 10–8 Ma. In addition, Wang et  al. (2016), 
using new apatite (U-Th)/He data together with 
existing thermochronological data, backed by 
stratigraphic, structural, and geomorphologic ob-
servations, inferred that the Ailao Shan-Red River 
shear zone experienced a phase of rapid cooling 
and exhumation starting near 14–10 Ma, and then, 
since 10 Ma a reversal from left-lateral slip on the 
Ailao Shan shear zone to right-lateral slip on the 
Red River fault. Again, these tectonic phenom-
ena coincide with our estimate of the initiation of 
clockwise rotation of the southeastern Tibet.

Rapid River Incision Due to Rapid Increase 
in Mean Elevations of Southeast Tibet

In eastern Tibet east of the eastern syntaxis 
of the Himalaya, age-elevation transects of low-
temperature thermochronometers suggest slow 
cooling between 100 Ma and 10–20 Ma and a 
change to rapid river incision between ca. 8 Ma 
and 13 Ma (Clark et  al., 2005; Godard et  al., 
2009, 2010; Ouimet et al., 2010; Zhang et al., 
2016). Thus, these data can be interpreted to in-
dicate surface uplift, presumably in response to 
crustal thickening, concurrent with the onset of 
rotation in this region.

Deformation within the Tibetan Plateau
Since the initial recognition of active N-S–

trending rifts in southern Tibet (Armijo et  al., 
1986; Molnar and Tapponnier, 1978; Ni and York, 
1978; Tapponnier and Molnar, 1977), numerous 
studies have constrained the timing of the rift-re-
lated normal faulting and E-W crustal extension, 
as the onset of extension was argued to represent 
the time when the plateau began to collapse af-
ter it reached its highest elevation (England and 
Houseman 1989; Harrison et al., 1992; Molnar 
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et al., 1993). Reported dates of onsets of normal 
faulting and crustal thinning range from 15 Ma to 
8 Ma (e.g., Blisniuk et al., 2001; Dewane et al., 
2006; Edwards and Harrison, 1997; Garzione 
et al., 2003; Kali et al., 2010; Lee et al., 2011; 
McCallister et al., 2014; Murphy et al., 2002; San-
chez et al., 2013; Saylor et al., 2010; Thiede et al., 
2006; Wu et  al., 2008) (Fig. 5). The relatively 
wide spread of ages, and the apparent absence of 
strict simultaneity with the onset of rotation about 
the eastern syntaxis may be due in part to inac-
curacies in ages. More important, however, if de-
velopment of normal faulting and crustal thinning 
did result from removal of mantle lithosphere, we 
would not expect such a process to have occurred 

at the same time across the whole of Tibet. More-
over, only after the entire plateau was undergoing 
extension and crustal thinning, would the effects 
of its increase in gravitational potential energy af-
fect surrounding regions.

Deformation of Regions North and Northeast 
of Tibet

In northeastern Tibet, early Cenozoic defor-
mation was accommodated primarily by slip on 
WNW-trending thrust faults, which indicates 
that during the early stages of orogenesis, the 
orientation of thrust faulting was approximately 
parallel to the orientation of plate convergence. 
Nevertheless, some studies reveal a middle-

late Miocene change in the kinematic style 
of plateau growth, from long-standing NNE-
SSW contraction that mimicked the orientation 
of plate convergence to the initiation of new 
structures accommodating E-W contraction 
(e.g., Lease et al., 2011; Zheng et al., 2006). 
Lease et  al. (2011) reported apatite (U-Th)/
He and apatite fission track ages from Laji-
Jishi Shan in the northeastern Tibetan Plateau 
(Fig. 5), from which they inferred that acceler-
ated growth of the WNW-trending eastern Laji 
Shan began ca. 22 Ma. Rapid growth of the 
adjacent, but north-trending Jishi Shan, how-
ever, did not commence until ca. 13 Ma. Thus, 
the primary orientation of contraction in the 

10.1 ± 1.5 Ma

Figure 5. Distribution of the tectonic events that occurred within and around the Tibetan Plateau near 10–15 Ma. The black arrows 
point to locations of normal faulting in the plateau interior. The blue arrows point to the locations of other tectonic events marked by 
blue text.
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composite Laji-Jishi Shan changed >45° with 
the initiation of E-W shortening of the Jishi 
Shan. Furthermore,  paleoclimate records from 
sediment in Neogene basins on either side of 
the Jishi Shan show the development of a rain 
shadow due to surface uplift of the range by 
ca. 11 Ma, but not before ca. 16 Ma (Hough 
et al., 2011). Zheng et al. (2006), using apatite 
fission track thermochronology, found that late 
Cenozoic rapid cooling occurred at ca. 8 Ma in 
the Liupan Shan region (Fig. 5), and the north-
trending thrust faults there began to accommo-
date lateral motion at that time. This inception 
of E-W contraction is only slightly later than 
the eastward transport and clockwise rotation 
in southeastern Tibet, and reflects a change in 
the kinematic style of plateau uplift and lateral 
growth. Lateral, outward growth of the margin 
of the plateau should begin later than crustal 
shortening that is now within the high terrain.

North of the Tibetan Plateau, the current 
rate of convergence across the western Tien 
Shan is 20 ± 2 mm/yr (Zubovich et al., 2010) 
and the estimated shortening across the belt is 
∼200 km (Avouac et al., 1993). Assuming a 
20% error in the amount of shortening and a 
constant convergence rate suggests an initia-
tion of crustal shortening at 10 ± 2 Ma (e.g., 
Abdrakhmatov et  al., 1996; Zubovich et  al., 
2010). Numerous studies of thermochronolo-
gy, which date the onset of rapid cooling (Bul-
len et al., 2001, 2003; Macaulay et al., 2013), 
and of magnetostratigraphy, which date abrupt 
increases in sedimentation within a few mil-
lions years of 10 Ma (Charreau et al., 2005, 
2008, 2009; Huang et al., 2006, 2010; Ji et al., 
2008; Qiao et al., 2016; Sun et al., 2004, 2009), 
concur with an abrupt increase in the erosion 
rate of the Tien Shan, presumably associated 
with rapid surface uplift, at ca. 10 Ma, though 
abundant evidence suggests that some relief 
existed well before ca. 10 Ma.

Geodynamic Implications of the 
Approximately Synchronous 
Reorganization of Deformation

For continental dynamics on a scale in which 
deformation is averaged over distances compa-
rable to the thickness of the lithosphere, a thin 
viscous sheet provides a good model (e.g., Bird 
and Piper, 1980; England and McKenzie, 1982, 
1983; Houseman and England, 1986). In this 
formulation, deformation is resisted both by 
dissipative, or viscous process, and by gravity 
where crust thickens. Allowing for strain rates, 
ε , to vary with deviatoric stress, τ , as τn , the 
constitutive law can be written:

 τ εij
n

ijBE= −( )




1 1/
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where B  is a viscosity coefficient, and E  is 
the second invariant of the strain-rate tensor. 
Only two dimensionless numbers together with 
boundary conditions govern solutions to the 
 governing equations, n (≥3: Sonder and Eng-
land, 1986) and the Argand number, Ar:
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where g is gravity, ρc and ρm are the densities 
of crust and mantle, respectively, L is the thick-
ness of the thin viscous sheet, and therefore the 
lithosphere, and V is a characteristic horizontal 
component of velocity, like the rate at which 
the sheet is indented (England and McKenzie, 
1982). One may think of Ar as scaling resistance 
to crustal thickening imposed by gravity to re-
sistance by viscous processes; if Ar→0, gravity 
offers little resistance to crustal thickening, and 
the sheet is relatively strong, whereas when Ar is 
large, crust cannot thicken much because it tends 
to flow away from regions of thickened crust. 
The Argand number is sometimes called the feta-
brie number, for feta cheese corresponds to small 
Ar, and brie to large Ar.

The reliance on just two dimensionless num-
bers allows their ranges of values to be explored, 
and for their roles in large scale deformation to 
be revealed and assessed (e.g., England and 
Houseman, 1986; Houseman and England, 
1986). Comparisons of large-scale deforma-
tion from essentially all regions of large-scale 
deformation show patterns of deformation 
that can be matched by treating the continen-
tal lithosphere as a thin viscous sheet: eastern 
Asia (England and Houseman, 1986; England 
and Molnar, 1997; Flesch et al., 2001; Holt and 
Haines, 1993; Holt et al., 1991); Iran (Walters 
et al., 2017); Anatolia (England et al., 2016), 
and western North America (Bahadori et  al., 
2018; Flesch et  al., 2000; Reitman and Mol-
nar, 2021; Whitehouse et al., 2005). Moreover, 
strain-rate fields measured at the surface using 
GPS match those implied by seismic anisotropy 
in the underlying mantle, which suggests verti-
cally coherent deformation through the litho-
sphere (e.g., Chang et al., 2015; Davis et al., 
1997; Flesch et al., 2005; Holt, 2000).

The simplicity of the thin viscous sheet as 
a model for continental deformation allows it 
to reveal how changes in basic conditions or 
boundary conditions affect deformation. For 
example, as England and Houseman (1989) 
argued, a decrease in V, such as in the rate of 
indentation of a rigid object, like India, into a 
thin viscous sheet like the rest of Eurasia, would 
manifest itself as an increase in Ar, and hence 
could affect the pattern of deformation. Because 
of 1/nth power of V in the denominator of Ar, 

however, a major effect in the deformation field 
requires a huge change in V. A change in the 
viscosity coefficient, B, should have a bigger ef-
fect than comparable change in V, but insofar as 
diffusion of heat has the primary effect on vis-
cosity coefficient, such changes will require tens 
of millions of years to have an effect. Moreover, 
a concurrent change in B over an area the size of 
eastern Asia is implausible.

Both n and Ar are material parameters of 
the thin viscous sheet, and therefore changes 
in them, such as by changing the thickness of 
the lithosphere, L, or its average viscosity co-
efficient, B, strictly apply to the entire sheet, 
so that, in general, the equations solved do not 
depend separately on the ingredients of Ar in 
Equation (2). Lateral variations in Ar, however, 
offer the possibility of including more realis-
tic models with the inevitable trade-offs with 
non-uniqueness and potential loss of simple un-
derstanding (e.g., England and Molnar, 1997; 
Flesch et al., 2001). As England and Houseman 
(1989) showed, the simplest process that could 
affect the pattern of deformation in a thin vis-
cous sheet like the eastern Asian lithosphere 
and give rise to crustal thinning within the Ti-
betan Plateau would be to raise the surface of 
the plateau. Doing so would give the elevated 
region additional gravitational potential energy, 
which England and Houseman (1989) imple-
mented by locally increasing Ar. They showed 
that other possible processes, like weakening 
the part of the sheet occupied by the plateau 
would have an opposite effect to what is ob-
served. Where weaker, the sheet would shorten 
and thicken, rather than extend. They argued, 
and in our view convincingly, that the only way 
to induce a switch from thickening to thinning 
would be to raise the surface, and give the pla-
teau additional gravitational potential energy, 
and greater outward force-per unit length from 
the plateau. We recognize that others have of-
fered different explanations for the flow of 
material around the syntaxis, including chan-
nel flow within the crust (e.g., Clark and Roy-
den, 2000; Royden et al., 1997; Schoenbohm 
et al., 2006) and gravity currents (Copley and 
McKenzie, 2007), and that some question the 
removal of mantle lithosphere beneath Tibet 
(e.g., McKenzie and Priestley, 2008). Neverthe-
less, we consider removal of mantle lithosphere 
to be the simplest process that can accomplish 
this increase in gravitational potential energy 
and the change in tectonic style.

CONCLUSIONS

The traces of two major fault systems in 
southwest China, the Red River fault and 
 Yalong-Yulong-Longmen Shan thrust belt, are 
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currently being distorted by crustal movements 
in the area southeast of the Tibetan Plateau. 
GPS measurements show that region currently 
undergoes widespread, apparently continuous 
deformation dominated by virtually concentric 
clockwise rotation about the Eastern Himalaya 
Syntaxis and associated left-lateral shear of 
the region (Figs. 1 and 3). By treating current 
rates of crustal deformation as approximating 
long-term average rates, we use that velocity 
field to restore offsets of these fault traces, and 
suggest that such rotation and shear initiated at 
10.1 ± 1.5 Ma.

Significant change in styles and rates of de-
formation elsewhere in Tibet and its surround-
ings occurred at approximately the same time. 
For example, slip on the Ganzi-Yushu-Xian-
shuihe fault in eastern Tibet apparently began at 
that time. Slip on the Red River fault seems to 
have reversed, from left- to right-lateral, at that 
time. Several rivers began to incise rapidly into 
southeastern Tibet between 9 Ma and 13 Ma, 
presumably in response to a rapid increase in 
mean elevations of that region. Thus, the east-
ward transport and clockwise rotation seems to 
be one of several changes in style of deforma-
tion across the region.

Approximately concurrently with these 
changes in eastern Tibet, between 8 Ma and 15 
Ma N-S–trending rifts within the Tibetan Pla-
teau, on which E-W extension occurs by normal 
faulting, developed (Fig. 5). The change from 
roughly N-S crustal shortening and thickening 
within the plateau to extension and crustal thin-
ning is arguably the biggest change in style of 
deformation of Asia since India collided with 
Eurasia. Also, between 8 Ma and 15 Ma, the 
orientation of contraction in northeastern Tibet 
changed from NE-SW—approximately parallel 
to convergence between India and Eurasia—to 
E-W, which is perpendicular to the local orien-
tation of the margin of the plateau. Moreover, 
erosion of the Tien Shan north of Tibet acceler-
ated near 10 Ma, again presumably in response 
to accelerations of N-S crustal shorting and 
crustal thickening and the resulting surface up-
lift (Fig. 5). All of these changes can be seen as 
a logical response to an abrupt rise of the inte-
rior of the Tibetan Plateau at 10–15 Ma. Fol-
lowing England and Houseman’s (1989) logic, 
we concur that mantle lithosphere was removed 
from beneath the plateau, the surface rose, and 
the plateau gained gravitational potential en-
ergy per unit area. Hence, the elevated plateau 
applied an increased horizontal compressive 
force per unit length to its surroundings. The 
increased gravitational potential energy of that 
newly elevated terrain then powered outward 
growth of it, including extension and crustal 
thinning within the elevated region and en-

hanced crustal thickening of the surrounding 
regions, including regions as far away as the 
Tien Shan. The eastward movement of eastern 
Tibet and the clockwise rotation of that material 
around the Eastern Himalayan Syntaxis would 
be local manifestations of this larger geody-
namic event. Of course, the surface across 
a region more than 1000 km in dimension is 
not likely to have risen simultaneous, let alone 
instantaneously. Thus, the difference between 
surrounding regions undergoing a change in 
tectonic style and rate at ca. 10 Ma, and nor-
mal faulting scattered across Tibet starting be-
tween ca. 16 Ma and 8 Ma ought not to be a 
surprise. Convective removal of some or all of 
Tibet’s mantle lithosphere offers the simplest 
underlying mechanism not just for causing 
normal faulting within the Tibetan Plateau, but 
also for affecting the surrounding areas as de-
scribed above.
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